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Abstract. Yellow fever virus (YFV), a mosquito-borne virus endemic to tropical Africa and South America, is capa-
ble of causing large urban outbreaks of human disease. With the ease of international travel, urban outbreaks could lead
to the rapid spread and subsequent transmission of YFV in distant locations. We designed a stochastic metapopulation
model with spatiotemporally explicit transmissibility scenarios to simulate the global spread of YFV from a single urban
outbreak by infected airline travelers. In simulations of a 2008 outbreak in Asunción, Paraguay, local outbreaks occurred
in 12.8% of simulations and international spread in 2.0%. Using simple probabilistic models, we found that local inci-
dence, travel rates, and basic transmission parameters are sufficient to assess the probability of introduction and autoch-
thonous transmission events. These models could be used to assess the risk of YFV spread during an urban outbreak and
identify locations at risk for YFV introduction and subsequent autochthonous transmission.

INTRODUCTION

Yellow fever virus (YFV) is endemic to sub-Saharan Africa
and tropical South America, where it is maintained in nature
by transmission between nonhuman primates and sylvatic
mosquito species.1 Humans become infected when they enter
jungle areas and are fed on by infectious mosquitoes. As
infected humans move, they can transport the virus from one
region to another, serving as a source of infection for naı̈ve
mosquitoes in distant locations. Although the vast majority
of yellow fever occurs in remote, rural areas, urban outbreaks
can occur in areas infested by the anthropophilic mosquito
Aedes aegypti, a highly efficient vector of YFV. In 2008, an
outbreak of urban yellow fever was identified in metropolitan
Asunción, Paraguay.2 This was the first urban yellow fever out-
break documented in South America since 1942 and raised
concerns of the potential spread of the virus to non-endemic
areas with vectors capable of transmitting the virus, such as the
Caribbean, Central America, and North America.
In the Americas, the scale of yellow fever outbreaks over

the last one-half century has been limited by large-scale Ae.
aegypti control efforts3 and the use of YFV vaccine.4 However,
problems with vector control program sustainability,5,6 vaccine
supply,7–9 and adverse events associated with vaccination10–12

threaten primary prevention efforts. Recognition of the out-
break in Asunción was quickly followed by intensive vector
control efforts in over 25,000 households and administration of
more than 1 million doses of YFV vaccine.2 Because of either
interventions or natural abatement, the Asunción outbreak
was limited to only nine confirmed cases. With a more hospi-
table environment and less control effort, this small outbreak
could have led to a larger, possibly international epidemic.
Previous work has quantified the continuing risk of introduc-

tion of YFV into urban environments13 but has not addressed
the risk of further spread. With the convenience and speed of
modern airline travel, travelers infected with YFV may quickly
arrive in nearby or distant international locations. Given the

high densities of competent vector mosquitoes in many tropi-
cal and sub-tropical areas of the world and the low vaccine
coverage rates outside of endemic regions, YFV-infected trav-
elers could present a major risk to many populations where
suitable conditions for transmission are present. The challenge
that we confront is to estimate the magnitude of that risk. To
simulate the global spread of YFV from a single urban out-
break by infected airline travelers, we developed a metapo-
pulation model to quantify critical measures of global spread
and estimated the risk of spread associated with the Asunción
outbreak. We then used probabilistic models to estimate the
probabilities of spread based solely on simplified estimates of
the most critical components.

MATERIALS AND METHODS

Stochastic metapopulation model. A full description
of the model and parameterization can be found in the
Supplemental Information. Briefly, we included 141 cities
(Figure 1) based on their importance to international travel,
proximity to yellow fever endemic areas, or involvement in the
recent spread of chikungunya virus (another arthropod-borne
virus transmitted by Aedes mosquitoes). Each city was given
a local human population consisting of susceptible, incubating,
infectious, and immune individuals, any of whom can engage
in temporary travel to other cities.14 Climate data for all cities
were extracted from long-term climate models created by
the Climate Research Unit of East Anglia University, United
Kingdom.15 Cities where at least 6 months of a typical year
have an average temperature of less than 10�C or no rainfall
were considered unsuitable for Ae. aegypti habitation.16 Each
suitable city was given an Ae. aegyptimosquito population that
varies depending on local, daily, climate-dependent mortality
rates determined using a spline-smoothed version of the
climate data. The mosquito populations included susceptible,
incubating, and infectious mosquitoes. Mosquitoes may be
infected by feeding on viremic humans, at which point they
undergo an incubation period before becoming infectious.
Humans, in turn, may be infected by infectious mosquitoes
and then undergo an incubation period followed by a viremic
phase and then recovery, at which point they gain immunity
to YFV. We incorporated two vaccination scenarios in the
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model: no vaccination and previous vaccination based on the
latest available country-specific vaccine coverage estimates
from the World Health Organization.17 Previously vaccinated
individuals were considered immune.
Travel (including connecting travel) between each city pair

was estimated using city and network characteristics in a regres-
sion model based on US sampled itinerary data (US Depart-
ment of Transportation; www.transtats.bts.gov/Tables.asp?DB_
ID¼125) and global airline data (Official Airline Guide; www.
oagaviation.com/Solutions/AnalysisTools/Traffic/t100inet.html).
Incubation periods were modeled based on historical YFV

data.18 Temperature- and humidity-dependentAe. aegyptimor-
tality was derived from previous work by Focks and others.19

Published data on the human infectious period, vector den-
sity, vector biting rate, efficiency of human to vector transmis-
sion, and efficiency of vector to human transmission are too
limited to adequately characterize these components (Table 1).
Rather than analyzing the sensitivity of the model outcome to
each of these parameters individually, we combined their lowest
estimates to create a lower-limit low transmissibility scenario,
their highest estimates to create a worst-case high scenario,
and central estimates to create a moderate scenario. For the
ease of discussion, we classify these scenarios in terms of R0,
the basic reproductive number. In the case of a vector-borne
virus such as YFV, R0 can be defined as the average number of
human infections resulting from a single human infection (cal-
culation described in Supplemental Information).
Each simulated epidemic is seeded by introducing infected

humans to a single city at a specified day of the year. The
model is discrete with daily time steps, and all interactions are
stochastic. A number of epidemics are simulated to generate a
range of possible outcomes starting from a given scenario.
Probabilistic models. A full description of these models

can be found in Supplemental Information. The models are

parameterized the same as the stochastic metapopulation
model. With pi, j as the probability of travel from city i to city
j and NI

i,t as the number of infected individuals in city i at
time t, the probability of infected individuals traveling from a
particular city, i0, to any other city by time T can be written as:

pSPREADði0,TÞ ¼ 1�
YT
t¼0

YI
i 6¼i0

ð1� pi0; iÞN
I
i0 ; i , ð1Þ

where i is the city index for cities i ¼ 1, 2, . . . , I and I is the total
number of cities. The probability of introduction from any
other city to city i0 by time T can be written as:

pINTROði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

ð1� pi; i0 ÞN
I
i; t : ð2Þ

If the time series NI
i,t is unknown, the equation may be refor-

mulated to assume that all we know is an estimate of the num-
ber of people who have been infected and the rates of travel.
Equation 1, describing the probability of an infected traveler
leaving city i0, can be simplified to be a function of cumulative
infected person-days in city i0, Xi0:

pSPREAD i0ð Þ ¼ 1�
YI
i6¼i0

ð1� pi0; iÞXi0 : ð3Þ

To assess the probability of novel autochthonous transmission
events, weused branching process analysis.20 In the case of vector-
borne infections, an infectious human generates a random num-
ber of infectious vectors from a distribution determined by the
vector density, feeding rate, transmission efficiency, and proba-
bility of a vector surviving the extrinsic incubation period. An
infectious vector, likewise, may give rise to any number of
infectious humans dependent on the feeding rate, transmission
efficiency, and vector longevity. To analyze the probability of
extinction in a single step, we analyzed the value g(0) for the
respective probability generating function g(s).20 In this case,
we use a composite probability-generating function to analyze
the probability that three processes—infectious individuals trav-
eling from city i to j, infection of vectors in city j, and infection
of humans in city j—result in zero new human cases at time t:

gTI
gV gHð0, i, j, tÞð Þð Þ ¼ 1� 1� pi; j þ pi; je

RHV
0 j; t

ðe�RVH
0 j; t�1Þ

� �NI
i; t

:

ð4Þ

This equation requires RHV
0 and RVH

0 , the average number of
infectious vectors produced per infectious human and the

FIGURE 1. The 141 cities included in the analysis. Asunción is indi-
cated by the largest dot.

TABLE 1

Parameters for the low, moderate, and high transmissibility scenarios

Parameter Low Moderate High Source

Female mosquitoes per person* 1 2 4 52
Vector longevity (days)* 10.6{ 10.6{ 10.6{ 19
Human blood meals per mosquito per day 0.5 0.7 1 29, 35, 36, 53, 54
Efficiency of human to vector transmission 0.2 0.5 0.5 29, 31–36
Efficiency of vector to human transmission 0.5 0.5 1 32
Extrinsic incubation period (days)* 6.9{ 6.9{ 6.9{ 18
Human infectious period (days) 3 3 4 55

Peak R0 (at 36
�C and 100% relative humidity) 0.42 4.1 90

*These factors are dependent on local climate and thus, exhibit significant spatiotemporal variation. Their values here correspond to 36�C and 100% relative humidity.
{These factors are considered well-estimated and thus, do not vary between models.
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average number of infectious humans produced per infectious
vector, respectively, both of which exhibit spatiotemporal vari-
ation and thus, are subscripted (i,t). As above, introduction
may occur from different cities and at different time points,
and therefore, the probability of novel autochthonous trans-
mission in city i0 by time T is:

pAUTOði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

1� pi; i0 þ pi; i0e
RHV
0 i0 ; tðe

�RVH
0 i0 ; t�1Þ

 !NI
i; t

:

ð5Þ
This probability can also be estimated in the absence of com-
plete information by modifying Equation 5 to use infected
person-days, X, for each potential source city rather than a
daily number of infected individuals:

pAUTOði0Þ ¼ 1�
YI
i6¼i0

1� pi; i0 þ pi; i0e
RHV
0 i0 ; tðe

�RVH
0i0 ; t�1Þ

 !Xi

: ð6Þ

The probability of spread from a given city, i0, resulting in
autochthonous transmission in any other city is:

pSPREAD!AUTOði0Þ ¼ 1�
YI
i6¼i0

1� pi0; i þ pi0 ; ie
RHV
0 i; t

ðe�RVH
0 i; t�1Þ

� �Xi0

:

ð7Þ
In the presence of vaccination, RVH

0 is replaced by the effective
reproductive number, RVH

E , indicating transmissibility in a par-
tially vaccinated population:

RVH
E ¼ RVH

0 ð1� pVAXÞ, ð8Þ
where pVAX is the proportion of the population that has been
effectively vaccinated.

RESULTS

R0. We first established three different model parameter
sets and characterized them in terms of R0, which indicates
the average number of infected humans produced by a single
infected human in a completely naı̈ve population. Using low,
moderate, and high literature estimates of the parameters for
the human infectious period, vector density, vector biting rate,
efficiency of human to vector transmission, and efficiency
of vector to human transmission, we estimated R0 values to
be 0.42, 4.1, and 90 under the respective scenarios at peak
transmissibility conditions (Table 1). Although these R0

estimates classify transmissibility at 36�C and 100% relative
humidity, transmissibility in the model is adapted to reflect
temporal and geographic variation of local climate. Figure 2
shows global climate-adjusted estimates of R0 based on the
moderate transmissibility scenario for January and July.
Spread without vaccination. Before the outbreak-associated

vaccination campaign in 2008, reported vaccine coverage
in Paraguay was 34%,17 but vaccination efforts had been
concentrated on children throughout the country and people
in rural border areas rather than in Asunción.2 We, therefore,
assumed that the population of Asunción was 100% susceptible.
Furthermore, to simulate a worst-case scenario, we assumed
that all other populations were also 100% susceptible. The
first cases in Paraguay were reported in January of 2008, and
therefore, we ran 1,000 simulations with the introduction of a

single incubating individual to Asunción on January 1. Given
the local climate at that time of year, the initial R0 values in
Asuncion were 0.047, 0.46, and 10 for the low, moderate, and
high scenarios, respectively.
In the low transmissibility scenario, only 2.3% of the sim-

ulations resulted in local transmission, with a maximum of
seven additional cases occurring (Table 2). Because transmis-
sion under this scenario was so limited and spread to other
cities did not occur, it was not considered in later experiments.
Under the moderate transmission scenario, a single introduc-
tion led to additional human transmission in 128 (12.8%) of
the simulations. In 108 (84.4%) of these outbreaks, the out-
break involved only local transmission, affecting a median
of 2 persons with a range of 1–981 persons. In two out-
breaks, infectious individuals arrived in other cities but did not
initiate any additional transmission. In the other 20 (15.6%)
simulations, however, large epidemics occurred, affecting
450,000–550,000 people in Asunción, and international spread
occurred, resulting in YFV pandemics. Figure 3 shows epidemic
curves for a selection of cities under the moderate R0 model.
Under the high R0 scenario, nine (0.9%) simulations resulted
in only small-scale local transmission (one to three additional
cases), one of which resulted in a single infected traveler going
to New York (Table 2). In 689 (68.9%) other simulations, there
were large local outbreaks leading to pandemics.
Dynamics were monitored locally for both potential intro-

duction (i.e., the presence of infectious individuals) and
autochthonous transmission, which was evidenced by a locally
acquired human infection (Figure 3). In the moderate R0 model,
the first international spread of YFV by an infected or infec-
tious traveler from Asunción occurred at a median of 259 days
(range ¼ 14–561 days) after introduction into Asunción. At the
time of introduction, a median of 1,013.5 infections (range ¼
3–6,363 infections) had occurred in Asunción. The first inter-
national autochthonous transmission occurred after 596.5 days
(range ¼ 203–1,310 days) when there had been 10,654 infec-
tions (range ¼ 1,045–61,240 infections) in Asunción. In the high
R0 model, both introduction and autochthonous transmissions
occurred earlier at a median of 53 (range ¼ 3–80 days) and
68 days (range ¼ 27–94 days), respectively. This finding corre-
sponded to a median of 756 infections (range ¼ 5–8,735 infec-
tions) occurring before the earliest foreign introduction event
and 9,468 infections (range ¼ 28–140,681 infections) before
the first foreign autochthonous transmission event.
The first three cities to which YFV was introduced by

infected travelers in both the moderate and high trans-
missibility scenarios were Paris, London, and New York.
Autochthonous transmission occurred earliest, on average, in
New York, Miami, and Singapore in the moderate R0 model
and Miami, Sao Paulo, and Singapore in the high R0 model.
This order of initiation of autochthonous transmission varied
greatly between simulations. For example, although Miami
was, on average, the first city to experience autochthonous
transmission in the high R0 model, in 25.7% of the simulations,
10 or more cities experienced transmission before Miami.
Spread with vaccination. We then repeated simulations for

both the moderate and high transmissibility scenarios under
the assumption that the population of each city had been
vaccinated at the last reported coverage rate for its respective
country. In Asunción, for example, 67% of the population was
assumed to be immune, because the estimated YFV vaccine
coverage for Paraguay was 67% after the 2008 vaccination
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campaign. Under these conditions, local transmission
occurred in 69 and 640 of 1,000 simulations in the moderate
and high transmission scenarios, respectively (Table 2). In the
6.9% of moderate scenario simulations in which transmission
occurred, transmission was limited to 1–12 new local
infections with a single infected traveler but no subsequent
transmission. In the high R0 model, 57.4% of the simulations
resulted in pandemics. When pandemics occurred, the total
number of infections globally was reduced by �26% (307.2–
307.8 million with vaccination versus 416.4–416.8 without
vaccination).
Probabilistic models. For each simulation, the probabilities

of introduction, pINTRO, and introduction leading to autochtho-
nous transmission, pAUTO, were calculated using the theoretical
models. Figure 4A shows the increase in pINTRO over the course
of a single simulation for three cities. Introduction is predicted
when pINTRO¼ 0.5. In the moderateR0 model, there were 2,802
simulated introductions of a possible 140,000 (1,000 simula-
tions for 140 cities). On average, predicted introduction was
22 days (middle 95% ¼ �253–277 days) (Figure 4B and C) and

2 days (middle 95% ¼ �23–23 days) before introduction in the
moderate and high R0 scenario simulations, respectively. Of
the 2,802 simulated introduction events, 2,800 were predicted
for a sensitivity of greater than 99% and a negative predic-
tive value (NPV) of greater than 99%. With 20 false positives,
both the specificity and positive predictive value (PPV) were

TABLE 2

Occurrence of local YFV transmission in Asunción, infected travelers,
and autochthonous transmission in other cities in simulations under
different transmissibility scenarios

R0 parameterization
Transmission in
Asuncion (%)*

Infected
travelers (%)*

Transmission in
other cities (%)*

Low 2.3 0.0 0.0
Moderate 12.8 2.2 2.0
High 69.8 69.0 68.9
Moderate with
vaccination 6.9 0.1 0.0

High with vaccination 64.0 57.4 57.4

*Percentage of 1,000 simulations.

FIGURE 2. Estimated R0 in January and July for an average year. R0 is a measure of transmission potential under idealized contact conditions and
does not account for important extant determinants of transmission, such as the prevalence of vaccination or personal protective practices.
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also greater than 99%. In the high R0 model, all but 1 of 96,460
introductions were predicted for a sensitivity and NPV of
greater than 99%. Specificity was greater than 98% with 689
false positives, and the PPV was greater than 99%.
The onset of autochthonous transmission is predicted at

pAUTO ¼ 0.5. In the simulations, autochthonous transmission was
predicted on average 33 days (middle 95% ¼ �171–242 days)
(Figure 5) and 11 days (middle 95% ¼ �14–33 days) before
occurrence in the moderate and high R0 simulations, respec-
tively. In the moderate R0 model, autochthonous transmission
was predicted on 2,580 occasions, of which 2,560 had simulated
transmission events (PPV > 99%). Specificity was also greater
than 99% with no false negatives, and sensitivity and NPV
were 100%. The high R0 model also had no false negatives
(sensitivity ¼ 100%, NPV ¼ 100%). There were 689 false posi-
tives, however, with specificity and PPV approximately 99%.
With preexisting vaccination, only the high R0 model led

to autochthonous transmission in other areas (Table 2). For
introduction and autochthonous transmission, sensitivity,
specificity, PPV, and NPV were all greater than 99%. Both the
prediction and occurrence of introduction and autochthonous
transmission were delayed when vaccination was incorporated
(Figure 6).
We also assessed the probabilistic models in the case where

complete data on an epidemic is unknown. Figure 7A shows
the probability of spread, pSPREAD, from Asunción using the

travel parameters presented here under increasing cumulative
infected person-days and the probability of spread resulting
in autochthonous transmission, pSPREAD!AUTO, in at least one
other city based on the number of infected person-days and
RHV

0 and RVH
0 on January 1. The probability of spread leading

to autochthonous transmission is delayed compared with the
probability of spread, and it is further delayed with decreased
R0 or the presence of preexisting vaccination in other cities.
With 10,000 infected person-days, for example, the probability
of spread having already occurred is approximately 0.8, and the
probability of autochthonous transmission having occurred in
another city is approximately 0.5 under the high R0 model and
0.2 under the moderate R0 model. Note that an average human
infection results in 7.6 infected person-days (4.6 days incubating
and 3 days infectious), and therefore, 10,000 infected person-
days is roughly equivalent to a cumulative total of 1,300 peo-
ple infected.
The modified infected person-day equations can also be

used to calculate the probability of introduction to a particu-
lar city. Figure 7B shows how the cumulative probabilities of
introduction and autochthonous transmission in three cities
follow the number of infected person-days in Asunción. In the
case of Paris, introduction is highly probable, but R0 is so low
on January 1 that the probability of autochthonous transmis-
sion is virtually zero. Meanwhile, when R0 is high, such as in
Miami and Johannesburg in the high R0 model, the probability

FIGURE 3. Pandemic simulation. The lines indicate the number of individuals becoming infectious each day for nine representative cities in a sin-
gle moderate R0 pandemic simulation.YFV transmission is initiated in Asunción, where transmission follows a seasonal pattern. The first introduc-
tions to other cities (dashed lines) began with Paris on day 254. The first autochthonous transmission outside of Asunción (dotted lines) occurred
in Miami on day 629 (after introduction on day 622). Repeated introductions and seasonal variation in transmissibility may lead to recurring epi-
demics. In Denver and Paris, the climate does not support YFV transmission, and therefore, all of the infectious individuals in those locations are
returning or visiting travelers from areas where transmission is ongoing.
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of introduction leading to autochthonous transmission is nearly
equivalent to the probability of introduction.

DISCUSSION

The model described here is the first model to mechanisti-
cally address the potential for a vector-borne pathogen, such
as YFV, to spread around the world through infected airline
travelers. It was built using our best understanding of the
dynamics of Ae. aegypti mosquitoes, YFV infection, and global
travel and was designed to assist in assessing the probabilities
of spread of YFV in the event of an urban epidemic. To put
this model into a real life context, we applied it to an actual
outbreak that occurred in Asunción, Paraguay, in 2008. Below,
we discuss our estimation of YFV transmission dynamics, what
the models suggest about the outbreak in Asunción, our find-
ings regarding the probability of introduction and autoch-
thonous transmission of YFV, the effect of existing vaccine
coverage, and the limitations of the data and models.
YFV transmission dynamics.We assessed three transmission

scenarios representing drastically different estimations of
YFV virus transmissibility and pandemic potential (Table 1).
Although all three scenarios incorporate plausible estimates
for individual parameters, it is likely that the moderate
parameter set represents the most realistic scenario. The lowest
estimate that we evaluated for R0 was 0.42, too low to reliably
cause epidemics even under the most favorable environmental
conditions. The highest estimate for R0 was 90, extremely high
compared with related dengue viruses for which estimates

range from 0 to 103 but with median estimates in the range
of 1 to 6.21–27 Moreover, given that most YFV epidemics are
small or progress slowly,1 it is more likely that R0 for YFV is
generally much lower, closer to 1 than 90.
Between the low and high R0 estimates, there is much

parameter flexibility. Although our moderate model likely
overestimates some parameters, it likely underestimates oth-
ers, leading to a middle ground. Although this likelihood can-
not be explicitly tested, each parameter that we used falls
within a reasonable range (more details in Supplemental
Information), and the estimated geographic areas where
transmission is favored (Figure 2) correspond to the known,
historical, and estimated spatial distributions of YFV and den-
gue virus transmission.28 The YFV R0 estimates from the mod-
erate model are also similar to those estimates in previous
studies.25,29,30 Note that R0 is not an absolute determinant of
potential transmission; many other factors such as vaccination
rates, vector control programs, and personal protective mea-
sures may also determine whether transmission occurs.
Further refining estimates of R0 would be difficult because

of the complexity of the underlying components. For example,
various studies estimate that the average human to vector effi-
ciency of YFV transmission is much less than 0.5, the estimate
under the moderate scenario.31–34 At lower efficiency esti-
mates, however, R0 quickly drops below one, even under ideal
environmental conditions. For YFV to cause even occasional
epidemics, as it does, either this efficiency has been routinely

FIGURE 5. Probability of autochthonous transmission (moderate
R0). A shows the probability of autochthonous transmission (solid
line) for three cities as a function of time in a single simulation (the same
simulation as Figure 4). For each city, the threshold, pAUTO ¼ 0.5, is
indicated by the horizontal dashed line, and the time of the first locally
acquired human infection in the simulation is indicated by the vertical
dotted line (no transmission was predicted in Paris, and none occurred
in the simulation). B shows the timing of simulated versus predicted
autochthonous transmission events for all cities where simulated
autochthonous transmission occurred (N ¼ 2,560). C is a histogram of
the difference between the simulations and predictions in B (mean
difference¼ 33 days, middle 95%¼�171–242 days).

FIGURE 4. Probability of introduction events (moderateR0).A shows
the probability of introduction (solid line) for three cities as a function of
time in a single simulation. For each city, the threshold, pINTRO ¼ 0.5, is
indicated by the horizontal dashed line, and the time of actual first
introduction in the simulation is indicated by the vertical dotted line.
B shows simulated versus predicted introduction times for all cities where
introduction was predicted and occurred (N¼ 2,800). C is a histogram
of the time difference between the predicted and simulated introduc-
tions in B (mean difference ¼ 22 days, middle 95% ¼ -253–277 days).
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underestimated or there are other components that have been
underestimated.
Asunción. In the actual Asunción outbreak, a total of nine

locally acquired infections were confirmed. Using the moderate
R0 parameter set to simulate the introduction of a single
infected individual into Asunción, we found that small local
outbreaks occurred in 10.8% of the simulations. An outbreak
like the one that was reported is, thus, a distinct possibility,
although no further transmission was a more common result
in simulations (87.2%).
It is possible that we underestimated the probability of

local outbreaks by underestimating YFV transmissibility in
Asunción. In our high R0 model, the frequency of local out-
breaks was higher, with local transmission occurring in 70.7%
of the simulations. However, in 98% of those outbreaks, a
pandemic occurred, an eventuality that did not occur in the
real outbreak.
We also lack a complete description of the actual outbreak.

An infected individual with a travel history to rural areas with
ongoing transmission was never identified, and the true num-
ber of people infected is likely underestimated, because many
infected individuals may be asymptomatic. However, if more

than one infected person had arrived, the probability of a local
epidemic would have been substantially higher. For example,
given that 10.8% of introductions in the moderate R0 model
resulted in local transmission, if six infected people arrived,
the probability of local transmission would be almost 50%
(1� [1 � 0.108]6).
The most probable explanation for the short-lived out-

break in Asunción is that it was self-limited because of a rela-
tively inhospitable environment (low local R0) and that spread
beyond Asunción did not occur, because with so few individu-
als infected, spread is unlikely to occur. Using Equation 3, with
a total of nine infected individuals and average duration of
infection of 8 days, the probability of at least one infected indi-
vidual leaving Asunción is approximately 0.01.
Probability of introduction by travelers. The first event of

interest relative to the potential spread of YFV by travelers
is the appearance of an incubating or infectious individual in
a population where YFV is absent. The simulations presented
here can be used to directly estimate the probability of spread
under the assumptions that we have presented. In the moderate
R0 model, international introduction from Asunción was rare,
occurring in 2.2% of simulations. However, in 90.9% of those

FIGURE 6. The effect of vaccination on simulated and predicted events (high R0).A shows simulated and predicted introduction times (N ¼ 2,000,
sampled randomly from the complete set) for the high R0 model with (grey) and without (black) prior vaccination. B shows the simulated and pre-
dicted times of the onset of autochthonous transmission under both conditions.

FIGURE 7. Probability of spread. A shows the relationship between accumulating infected person-days in Asunción and the risk of spread to
at least one other city. The solid line is the probability of an infected traveler departing Asunción, pSPREAD, and the dashed and dotted lines are the
probabilities of the spread of autochthonous transmission to any other city, pSPREAD!AUTO, occurring under the high and moderate R0 models, respec-
tively. The influence of vaccination is shown as indicated, with hardly any difference in the high R0 model. pSPREAD!AUTO is calculated based on R0 on
January 1. B shows the probability of introduction (solid) and autochthonous transmission (dashed, high R0; dotted, moderate R0) to three cities
from Asunción. In Paris, pAUTO is almost zero under both the moderate and high R0 scenarios. In Miami and Johannesburg, pAUTO under the high R0

scenario is approximately equivalent to pINTRO.
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simulations, YFV-infected travelers eventually reached every
city in the model, leading to a pandemic. Thus, although the
probability of spread is low, the consequences may be drastic.
In the high R0 model, both of these events were more common,
with 69.0% of simulations resulting in international spread
and 99.9% of spread resulting in pandemics.
Focusing on the simulations in which pandemics did occur

in the moderate R0 model, the median time to spread was 259
days, but spread occurred as soon as 14 days after the initial
case was introduced to Asunción. At the time of the earliest
spreading events, the median outbreak size in Asunción was
just over 1,000 people and spread occurred with as little as
3 people infected. This timing, in terms of both actual time and
the number of people infected, shows that outbreaks could
quickly spread to other locations before being recognized.
The probabilistic models were highly sensitive and specific

for the prediction of introduction in the simulations and tended
to predict introduction before actual introduction (Figure 4).
As Equation 3 makes clear, the cities with the highest rates of
travel are the ones where the first introductions are expected.
In our model, Asunción had the highest rates of travel to Paris,
London, and New York, the cities where introduction occurred
earliest in the simulations. After the initial spread, the situa-
tion becomes more complicated, because there are multiple
sources of infected individuals.
In the midst of an ongoing outbreak, precise data on the

number of people infected and the timing of their infectious
periods is generally not available. Therefore, it may be of more
use to estimate the risk of spread using an estimate of cumu-
lative infected person-days. As presented in Equation 3, this
estimate and an estimate of travel rates are sufficient to esti-
mate both the probability of infected travelers leaving a
given city and the probability of infected travelers arriving in
a given city.
Probability of introduced autochthonous transmission.

Assessing the risk of introduction is only the first step.
Often more critical is assessing whether introduction will
lead to autochthonous transmission. The only additional
information needed to estimate the probability of autoch-
thonous transmission after introduction is the transmission
components RHV

0 and RVH
0 for the time and location of

interest (Equation 5). As discussed above, we have estimated
R0 and its subcomponents mechanistically, with reassuring
concordance with historical observations and environmental
suitability models.
Using probability generating functions to estimate the prob-

ability of one or more autochthonous infections, we reliably
predicted our simulations of these events (Figure 5). We also
estimated the probability of autochthonous transmission occur-
ring in other cities based solely on the cumulative number of
infectious person-days in a source city, showing that the prob-
ability of autochthonous transmission depends on both the
probability of introduction and the efficiency of local transmis-
sion (Figure 7B). The stochasticity of these processes contrib-
utes to the high degree of variability in the city where the
earliest autochthonous infections occurred in the simulations.
Prior vaccination. Prior vaccination in Asunción reduced

the probability of outbreaks (Table 1). This finding is because
of both reduced individual susceptibility (direct effect) and
reduced rate of vector to human transmission, because some
infectious vectors feed on immune humans (indirect effect).
Because the number of local infections is a key determinant

of the probability of international spread, vaccination in
Asunción reduces the frequency of spread (Table 1), and the
slower growth of those epidemics that do occur leads to a
delay in spread (Figure 6).
Despite the decreased probability of a seed epidemic and

slower spread when these epidemics did occur, pandem-
ics still occurred. Overall, the probability of autochthonous
transmission in other cities is slightly decreased, reflecting the
decreased transmissibility in the cities with high vaccine cov-
erage (Figure 7A). Previous vaccination also contributed to a
global reduction in the number of persons affected by approx-
imately 26% or 100 million persons. Thus, although prior
vaccination decreases the probability of spread occurring
and slows its pace, the potential for a major global health
problem persists.
Although pandemics may occur in the presence of prior vac-

cination, in our simulations, they only occurred in the high R0

model. Under the more realistic assumptions of the moderate
R0 model, they did not occur, suggesting that previous vaccina-
tion in the population where the first infections occur may be
sufficient to prevent international spread. We did not assess the
critical threshold for vaccination coverage, but optimal cover-
age rates can be derived based on R0 values.

29,35,36 Preventive
vaccination may seem a logical control measure, but there are
also problems with vaccine supply, cost, and safety.7–12 In future
work, we will evaluate the potential impact of both preventive
vaccination and reactive interventions, such as local vaccina-
tion and vector control, vaccination of travelers, and restric-
tion of travel.
Limitations. Two important sources of uncertainty are the

parameterizations of the travel network and YFV transmission
dynamics (Table 1). The former requires more data,14 and the
latter is partly captured in the different R0 scenarios. However,
even within a given scenario, there is likely more variability
than we could reasonably incorporate. Different vector densi-
ties and contact rates, for instance, may vary greatly between
cities based on housing characteristics and other factors
that cannot be reliably assessed on a global scale. It is also
not necessarily true that Ae. aegypti are present in all of the
areas where YFV transmission may occur in our model.28 In
some areas, Ae. aegypti has been replaced by Ae. albopictus,37

another competent vector.32,34,38,39 Because the geographical
distributions of the two species are dynamic and imprecisely
known and because the relative importance of each species to
YFV transmission is not well-understood, we did not attempt
to model any differences between them.
Beyond the parameterization assumptions above, one of the

most important assumptions that we make is that local transmis-
sion is a mass action-based process. There is ample evidence to
suggest that virus transmission byAe. aegypti is highly focal,40–43

thus treating each city as a single pool of individuals all
experiencing equal exposure risk masks significant underlying
heterogeneity. However, our primary interest is the probability
of spread between populations, and the local heterogeneity is
likely of little importance. Perhaps most critical to the subject of
interest here is the simple fact that not all travelers are equiva-
lent. It is well-documented that travelers visiting friends and
family are more likely to stay longer, stay in homes rather
than hotels, and be infected by pathogens while traveling.44–49

Unfortunately, adding more local heterogeneity for human and
vector interaction would require parameterization beyond the
reach of available data, especially when applied globally.
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Lastly, we made significant simplifications regarding the
immune status of the populations. We assumed either com-
plete susceptibility or partial immunity on the population
scale because of vaccination at a level consistent with the
reported country-wide rates, which do not necessarily reflect
immunity in the cities. Furthermore, vaccines are not the only
source of immunity. Some populations have experienced natu-
ral exposure, and others may have acquired some degree of
cross-immunity because of exposure to other flaviviruses. For
example, cross-protection afforded by prior dengue virus expo-
sure is a principal hypothesis for why YFV has not emerged
in Asia, where competent vectors and dengue viruses are
ubiquitous.50,51 Because of these complications and a lack of
data to address them on a global scale, more accurate estima-
tion of YFV susceptibility is a formidable challenge.
General conclusions. The models presented here provide

general approaches to assessing the risk of vector-borne
disease spread by infected travelers. Despite their limitations,
these models may serve as useful tools and starting points for
future models of vector-borne disease spread and interventions
designed to reduce the risk of spread. The models also represent
formal hypotheses about the YFV transmission system and travel
network, which is detailed in Materials and Methods and Supple-
mental Information. We found that the most critical predictors
of disease spread are the rates of travel, number of infected
individuals, general transmission parameters (RHV

0 and RVH
0 ),

and vaccination rates when vaccines are concerned. With esti-
mates of these components, calculation of the probability of intro-
duction and autochthonous transmission can easily be estimated
for any ongoing outbreak. Meanwhile, as improved estimates of
transmission components and travel rates become available, they
can be incorporated into complete mechanistic models, enabling
more detailed analyses of a wider variety of potential outcomes.
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